The Specific Volume of Poly(4-methylpentene-1) as a Function of Temperature ($30^{\circ}-320^{\circ} \mathrm{C}$) and Pressure ($0-2000 \mathrm{~kg} / \mathrm{cm}^{2}$)

PAUL ZOLLER, Neu-Technikum Buchs, Kunststofflabor, CH-9470 Buchs, Switzerland

Synopsis

Abstract

The dependence of the specific volume of a commercial sample of poly(4-methylpentene-1) (Mitsui TPX, RT-20, abbr. PMP) on temperature ($30^{\circ}-320^{\circ} \mathrm{C}$) and pressure ($0-2000 \mathrm{~kg} / \mathrm{cm}^{2}$) has been determined. Results are reported in tabular form and as approximate fits, making use of the Tait equation. The data show that the crystalline melting transition of this type of PMP is completed at $235^{\circ} \mathrm{C}$ under zero pressure and gives indication of a glass transition temperature T_{g} at about $20^{\circ} \mathrm{C}$ at $p=0$. Its approximate pressure dependence is given by $d T_{g} / d p \approx 0.015^{\circ} \mathrm{C} \mathrm{kg}^{-1} \mathrm{~cm}^{2}$. The zero pressure results on the melting and glass transitions are in agreement with DTA results. The $p-v-T$ data, quenching experiments, and a determination of the crystalline unit cell (tetragonal, $a=b$ $=18.70 \AA, c=13.54 \AA$) confirm earlier work indicating that the room-temperature crystalline specific volume of PMP is greater than the amorphous specific volume. This unusual density behavior persists to a temperature of $50-60^{\circ} \mathrm{C}$ at $p=0$ and to temperatures as high as $230-240^{\circ} \mathrm{C}$ under a pressure of $2000 \mathrm{~kg} / \mathrm{cm}^{2}$.

INTRODUCTION

Hydrostatic pressure is known to have a profound influence on the physical properties of polymers. Two recent reviews ${ }^{1,2}$ have summarized the effects of hydrostatic pressure on the specific volume (equation of state), glass and melting transitions, crystallization, and mechanical properties of polymers. A thorough knowledge of these and other phenomena (e.g., the specific heat, thermal conductivity) at high pressures is necessary for our understanding of polymeric materials, both from the fundamental point of view of the polymer scientist and from the point of view of the plastics engineer, since polymers are almost always processed at high temperatures and pressures, and in use they are often subjected to states of stress possessing a strong hydrostatic component.

One of the most fundamental properties affected by hydrostatic pressure is the specific volume. Although the specific volume is one of the simplest properties to be measured at high pressures and temperatures, relatively little work has been reported using equipment which provides a truly hydrostatic state of stress even for samples in the solid state. The first apparatus to accomplish this was, to our knowledge, that of Parks and Richards, ${ }^{3}$ who used it to furnish data on low-density polyethylene (LDPE). Hellwege et al. ${ }^{4}$ have described an apparatus capable of pressures to 2000 bar and temperatures to $250^{\circ} \mathrm{C}$. It was used to provide data ${ }^{4}$ on polystyrene (PS) to $250^{\circ} \mathrm{C}$, poly(methyl methacrylate)
(PMMA) to $140^{\circ} \mathrm{C}$, poly(vinyl chloride) (PVC) to $100^{\circ} \mathrm{C}, \mathrm{LDPE}$ to $175^{\circ} \mathrm{C}$, and high-density polyethylene (HDPE) to $203^{\circ} \mathrm{C}$. Heydemann and Guicking ${ }^{5}$ reported measurements between -80° and $150^{\circ} \mathrm{C}$ and pressures to 1000 bar on plasticized PVC and on PMMA. While the pressure in these measurements was truly hydrostatic, the volume changes were calculated from the length changes of a molded sample, thereby assuming the sample to be isotropic. Reliable measurements on a melt do not seem to be possible with this type of apparatus because irreversible length changes (at constant volume) are easily possible in the melt. More recently, Quach and Simha ${ }^{6}$ have described equipment capable of very precise p-v-T measurements between 0° and $200^{\circ} \mathrm{C}$ and pressures to 2000 bar. It has been used to provide data on PS^{6} and poly(orthomethylstyrene), ${ }^{6}$ isotactic and atactic PMMA, ${ }^{7}$ several methacrylates, ${ }^{8}$ LDPE, ${ }^{8} \mathrm{HDPE},{ }^{8}$ and PE of very high molecular weight. ${ }^{8}$ We have recently described an apparatus ${ }^{10}$ basically similar to the design of Quach and Simha, ${ }^{6}$ but having an extended temperature range to at least $380^{\circ} \mathrm{C}$ (revised upward from the $350^{\circ} \mathrm{C}$ given in ref. 10) at pressures to 2200 bar. We have already reported data on two polystyrenes. ${ }^{9,10}$ This work on poly(4-methylpentene-1) continues the reports on $p-v-T$ properties from our laboratory.

EXPERIMENTAL

Samples

We used a commercial grade of poly(4-methylpentene-1) (PMP), manufactured by Mitsui Petrochemical Industries, Japan, and designated "TPX" RT-20. It is basically an extrusion grade but also used for some injection moldings. In its commercial form, PMP is a light (density $\approx 0.83 \mathrm{~g} / \mathrm{cm}^{3}$), partially crystalline (isotactic) material with a crystalline melting point of about $240^{\circ} \mathrm{C}$ according to the manufacturer. Despite its crystallinity, it is completely transparent. Pellets were used after they had been thoroughly dried and annealed for about 4 hr at $150^{\circ} \mathrm{C}$ under a dry N_{2} atmosphere.

P-v-T Measurements

The apparatus and evaluation procedure for obtaining pressure-volumetemperature ($p-v-T$) data have been described in detail. ${ }^{10}$ The sample ($1-2 \mathrm{~g}$) is contained in a rigid sample cell one end of which is closed by a flexible metal bellows. The space in the cell not taken up by the sample is filled with mercury under vacuum. This sample cell is mounted in a pressure vessel, and pressures to $2200 \mathrm{~kg} / \mathrm{cm}^{2 *}$ are applied with a hand pump using silicon oil as the pressuretransmitting fluid. The pressure is transmitted to the contents of the sample cell by the flexible bellows, which expands until the pressure in the sample cell equals the applied pressure. The displacement of the bellows is measured by a linear variable differential transducer the coil of which is mounted outside the pressure vessel. This displacement can be converted into a volume change of the sample, making use of the cross-sectional area of the bellows and the (known)

[^0]$p-v-T$ properties of the confining mercury. This apparatus is capable of measuring specific volumes of polymers between 30° and $380^{\circ} \mathrm{C}$ at pressures to 2200 $\mathrm{kg} / \mathrm{cm}^{2}$ with an accuracy of $0.001-0.002 \mathrm{~cm}^{3} / \mathrm{g}$.

Measurements on PMP were performed along 22 isotherms (spaced 10° to $20^{\circ} \mathrm{C}$ apart) between 30° and $320^{\circ} \mathrm{C}$ and at pressure increments of $100 \mathrm{~kg} / \mathrm{cm}^{2}$ up to $2000 \mathrm{~kg} / \mathrm{cm}^{2}$. The lowest pressure at which measurements were taken was $100 \mathrm{~kg} / \mathrm{cm}^{2}$. The results quoted for $p=0$ are therefore extrapolated. This procedure yields more reliable values for the specific volume at $p=0$, because of some outgassing observed in most polymers at high temperatures. ${ }^{10}$

Determination of Sample Specific Volume

The absolute specific volume of the polymer at one temperature must be known for the evaluation of the data from the $p-v-T$ apparatus. ${ }^{10}$ For PMP the room-temperature specific volume is determined as follows: Water and glycerol are mixed until the sample stays suspended in the liquid. The specific volume of this mixture is equal to the specific volume of the sample, and it is determined by weighing an accurately known volume. This procedure is believed to yield the specific volume to $\pm 0.0003 \mathrm{~cm}^{3} / \mathrm{g}$, since a change in liquid density of this magnitude will cause the sample to rise or sink at an easily observable rate.

X-Ray Determination of Crystalline Density

Crystalline reflections from a compression-molded, annealed plate of PMP were scanned in a Philips counter diffractometer. $\mathrm{Cu} K_{\alpha}$ radiation ($\lambda=1.5418$ \AA) was used in conjunction with a Ni filter and pulse-height discriminator. Both the scattering and the divergence slit were set at $1 / 4^{\circ}$. The scanning speed was $1 / 4^{\circ} / \mathrm{min}$. The goniometer scale was calibrated by accurately setting the zero of the scale (to within 0.02°) and by setting the (111) reflection from a silicon calibration sample to an angle $2 \theta=28.47^{\circ} \pm 0.02^{\circ}$, corresponding to $d_{111}=3.1354$ \AA.

Differential Thermal Analysis (DTA)

All DTA determinations of the glass transition temperature, the melt temperature range, and the enthalpy of melting were performed on a Mettler TA 2000(B) quantitative thermal analysis system. A dry nitrogen blanket of 15 $\mathrm{ml} / \mathrm{min}$ was used in all runs.

RESULTS AND DISCUSSION

The specific volume of PMP as a function of pressure and temperature is reported in Table I. The isobars at $0,500,1000,1500$, and $2000 \mathrm{~kg} / \mathrm{cm}^{2}$, obtained by crossplotting the appropriate data from Table I, are shown in Figure 1. Individual data points are shown for the $1000 \mathrm{~kg} / \mathrm{cm}^{2}$ isobar in order to indicate the temperatures at which measurements were taken and to give an idea of the scatter in the data.

We first turn the data at zero pressure. The specific volume at $22^{\circ} \mathrm{C}$ and p $=0$ is $1.203 \mathrm{~cm}^{3} / \mathrm{g}$. The specific volume-versus-temperature curve at zero

TABLE I
Measured Specific Volumes Versus Temperature and Pressure. Line A Separates Points Belonging to the (Possibly Supercooled) Melt

	6.5	196.3	206. ${ }^{\text {a }}$	217.7	${ }_{220.9}^{T E}$	$E M P \cdot\left({ }_{260.5}^{0}{ }^{0}\right)$	250.5	265,9	285.6	303.8	318.9
						A.......**					
0 *	1.3023	1.3209	1.3323	1.3479	1.3	11.3890	1.4005	1.4137	1.4323	1.4530	1.4738
100	2899	1.3061	. 3151	1.327	54	9	1.3774	3881	4047	1.4222	97
200	. 2783	1.2921	1.3004	1.3103	1.3258	. 3467	1.3554	1.3673	2.3619	1.3978	2.4129
300	268	1.2806	1.2880	1.296	1.3095	295	1.3379	. 3485	1.3632	2.3767	. 3902
400	2592	1.2706	1.2773	1.2840	1.2955	1.3152	1.3219	1.3326	1.3469	1.3588	2.3707.
500	2508	1.2615	1.2674	1.2737	2.2840	1.3026	1.3084	1.3183	1.3324	1.3425	1.3536
600	2433	1.2532	2587	1.2641	2.2724	1.2893	1.2961	1.3052	1.3175	1.3287	2.3390
700	2365	1.2456	1.2508	1.255 e	63	1.2786	1.2850	1.2937	1.3062	1.3164	1.3260
800 :	1.2298	1.2381	1.2433	2475	1.25	1.2687	1.2747	1.2835	1.2946	1.3042	1.3138
-	1.2234	1.2314	1.2366	1.2404	1.2467	. 2596	1.2652	1.2732	1.2848	. 2940	2.3024
0 흘:	1.2179	1.2247	1.2299	1.2333	2.2392	2.2513	1.2570	1.2649	1.2753	1.2846	1.2926
1100 気:	1.2119	1.2186	1,2232	1.2274	2.2325	2.2439	2.2487	1.2559	1.2663	1.2756	1.2832
1200	1.2060	1.2137	1.2181	1.2215	1.2259	1.2356	1.2412	1.2484	1.2581	1.2666	1.2746
1300	2008	1.2078	1.2122	1.2156	1.2200	1.2209	1.2330	2.2420	1.2511	1.2592	1.2665
1400	2.3965	1.2027	1.2075	1.2105	,	1.2222	2271	1.2336	1.2441	1.2518	1.2591
1500	1.1918	1.1976	1.2020	1.2054	1.2690	. 2156	1.2205	1.226	1.2371	1.2445	1.2518
1600	1870	1.1933	1.1970	1.2003	1.2040	1.2101	1.2146	1.2211	1.2305	2.2379	1.244
1700	1.1835	1.1890	1.1927	1.1952	1.1989	1.2047	1.2084	1.2153	1.2247	1.2313	. 238
1800	1792	1.1847	1.1880	1910	. 1938	2.1992	1.2029	1.2095	1.2189	2.2256	1.2322
1900	1752	1.:804	2.1841	1.1863	1.1095	1.1937	1.1979	2.2045	1.2131	1.2198	1.2264
2000	1.1713	1.1769	1.1799	1.1824	1.1053	1.1895	1.1924	1.1994	1.2082	1.2141	1.2207

pressure shows a very distinct discontinuity in slope at about $235^{\circ} \mathrm{C}$. This is the crystalline melting point of PMP, or, better, the end of the crystalline melting range, since no real discontinuity in specific volume is observed. DTA gives values of $235^{\circ}-236^{\circ} \mathrm{C}$ for the end of the melting interval at heating rates of 1°, 5°, and $10^{\circ} \mathrm{C} / \mathrm{min}$ in complete agreement with the $p-v-T$ data. DTA also indi-

Fig. 1. Selected isobars, spaced $500 \mathrm{~kg} / \mathrm{cm}^{2}$ apart, in the $p-v-T$ relationship of poly(4-methyl-pentene-1). The line marked T_{g} gives the approximate dependence of the glass transition temperature on pressure. The line marked A is an isotherm placed through the end of the zero-pressure melting interval. Arrows denote the approximate intersections of the melt isobars with the measured isobars of the sample, i.e., the points in the p-v-T diagram at which crystalline and amorphous regions have the same specific volume.
cates that melting starts at about $170^{\circ}-180^{\circ} \mathrm{C}$. The melting enthalpy is about $5.5-6 \mathrm{cal} / \mathrm{g}$, the uncertainty resulting from different ways of placing the DTA baseline.
If the $p=0$ isobar of the melt is extrapolated to lower temperatures in order to get an estimate for the amorphous specific volume at room temperature, one gets the unusual result that this extrapolated melt isobar intersects the measured isobar of the sample between 50° and $60^{\circ} \mathrm{C}$. If this extrapolation is meaningful, this means that the crystalline specific volume at room temperature is greater than the amorphous specific volume, and it also means that at 50° to $60^{\circ} \mathrm{C}$ the amorphous and crystalline specific volumes are equal and equal to the specific volume of the sample. This unusual behavior of the specific volume has already been reported on noncommercial PMP samples. ${ }^{11-13}$ In order to check this result further, we determined the specific volume of quenched samples. There was a small but definite decrease in specific volume for samples quenched into ice water or liquid nitrogen: annealed samples had a specific volume of $1.203 \mathrm{~cm}^{3} / \mathrm{g}$, and the quenched samples gave values between 1.200 and $1.197 \mathrm{~cm}^{3} / \mathrm{g}$. The quenched samples still showed very definite x-ray crystallinity. The amorphous specific volume at $22^{\circ} \mathrm{C}$ therefore must be lower than $1.197 \mathrm{~cm}^{3} / \mathrm{g}$.

X-Ray diffraction data were found to be consistent with a tetragonal unit cell with $a=b=18.70 \pm 0.06 \AA$ and $c=13.54 \pm 0.04 \AA$. Assuming that the unit cell contains 28 repeat units, ${ }^{11}$ the crystalline specific volume is $1.209 \pm 0.01 \mathrm{~cm}^{3} / \mathrm{g}$, a value which is indeed slightly higher than our sample specific volume. Table II gives the details of the evaluation of the x-ray pattern. Table III compares

TABLE II
Evaluation of X-Ray Diffraction Data of PMP

Obs. angle 2θ	Index	Obs. spac., ${ }^{a}$ \AA	Calc. spac., ${ }^{a}, \mathrm{~b}$ \AA
9.50	200	9.31	9.35
12.43	211	7.12	7.12
13.42	220	6.60	6.61
16.37	311	5.41	5.42
16.80	212	5.28	5.26
18.32	321	4.84	4.84
20.65	411	4.30	4.30
21.30	420	4.17	4.18
21.65	322	4.10	4.12

a Using $\lambda=1.5418 \AA$.
b For tetragonal unit cell with $a=b=18.70 \AA, c=13.54 \AA$.

TABLE III
Structural and Other Data of PMP Samples Used in Different Investigations

Reference	$a=b, \AA$	c, \AA	Cryst. density, $\mathrm{g} / \mathrm{cm}^{3}$	Sample density, $\mathrm{g} / \mathrm{cm}^{3}$	$\begin{aligned} & \text { Melt. point, }{ }^{\text {a }} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
Natta et al. ${ }^{14}$		13.85		0.831	200-205
Frank et al. ${ }^{11}$	18.66	13.80	0.813	0.847	202-206
Griffith and Ranby ${ }^{12}$			0.828	0.830-0.838	247-250
Litt ${ }^{13}$	18.50	13.76	0.832		
This work	18.70	13.54	0.827	0.831	235-236

${ }^{\text {a }}$ Other workers have reported melting points of $228^{\circ} \mathrm{C}^{15}$ and $235^{\circ} \mathrm{C} .{ }^{16}$
our structural data with that of several laboratory-made samples. ${ }^{11-14}$ It is found that our value of a is somewhat larger than that of the other investigations, the value of c somewhat smaller. Note, however, that the samples of the other investigations also showed different melting points. Altogether, we may safely conclude that the crystalline specific volume of this commercial PMP is indeed higher than the amorphous specific volume.

The specific volume $v(0, T)$ at zero pressure can be fitted to polynomials of the form

$$
\begin{equation*}
v(0, T)=A_{0}+A_{1} T+A_{2} T^{2}+A_{3} T^{3}+A_{4} T^{4}+\cdots \tag{1}
\end{equation*}
$$

The following coefficients, obtained by least-squares fitting, reproduce the data in Table I to better than $0.001 \mathrm{~cm}^{3} / \mathrm{g}$ over the temperature ranges indicated: For $T<235^{\circ} \mathrm{C}$, i.e., for the partially crystalline material, including all of the melting interval, $A_{0}=1.2044 \mathrm{~cm}^{3} \mathrm{~g}^{-1}, A_{1}=-1.430 \times 10^{-4} \mathrm{~cm}^{3} \mathrm{~g}^{-1}{ }^{\circ} \mathrm{C}^{-1}, A_{2}=1.154 \times$ $10^{-5} \mathrm{~cm}^{3} \mathrm{~g}^{-1}{ }^{\circ} \mathrm{C}^{-2}, A_{3}=-7.315 \times 10^{-8} \mathrm{~cm}^{3} \mathrm{~g}^{-1}{ }^{\circ} \mathrm{C}^{-3}$, and $A_{4}=1.705 \times 10^{-10}$ $\mathrm{cm}^{3} \mathrm{~g}^{-1}{ }^{\circ} \mathrm{C}^{-4}$. For $T>235^{\circ} \mathrm{C}$, i.e., for the melt, $A_{0}=1.4075 \mathrm{~cm}^{3} \mathrm{~g}^{-1}, A_{1}=-9.095$ $\times 10^{-4} \mathrm{~cm}^{3} \mathrm{~g}^{-1}{ }^{\circ} \mathrm{C}^{-1}$, and $A_{2}=3.497 \times 10^{-6} \mathrm{~cm}^{3} \mathrm{~g}^{-1}{ }^{\circ} \mathrm{C}^{-2}$.

Turning now to the pressure results, we first note that the $p \neq 0$ isobars extrapolated from the melt again intersect the measured isobars of the solid sample. The intersections are marked with an arrow in Figure 1. At these intersections, the crystalline and amorphous specific volumes are again equal (and equal to

Fig. 2. Temperature dependence of the Tait parameter of PMP. For the solid state and the melting transition, the plot gives $\ln \bar{B}$, i.e., the average of the '「ait parameter along an isotherm.
the specific volume of the sample), and the points marked with an arrow therefore represent a few isolated points of the $p-v-T$ relations of completely amorphous or completely crystalline PMP. We also note that there is a break in the $p>$ $1000 \mathrm{~kg} / \mathrm{cm}^{2}$ isobars at low temperatures. This break marks the glass transition under pressure.

Extrapolating back to $p=0$, one obtains a zero-pressure glass transition temperature of about $20^{\circ} \mathrm{C}$, in essential agreement with DTA work, which shows a glass transition between 15° and $25^{\circ} \mathrm{C}$ at a scanning rate of $5^{\circ} \mathrm{C} / \mathrm{min}$. The approximate pressure dependence of T_{g} is given by $d T_{g} / d p \approx 0.015^{\circ} \mathrm{C} / \mathrm{kg} / \mathrm{cm}^{2}$. This pressure dependence, while quite uncertain due to the small number of data points below the glass transition line, is much smaller than that found for polystyrene glasses. $4,6,9,10$ A pressure dependence of the melting temperature cannot be obtained from these measurements: when the melt is pressurized, no solidification is effected in the time interval required for completion of the measurements along one isotherm (about 10 min). This must be due to the very slow crystallization rate at high temperatures and pressures. All data points to the right of isotherm A placed through the zero-pressure melting point, therefore, belong to the (possibly supercooled) melt.

For mathematical convenience, we have tried to represent our data by a mathematical expression. The so-called Tait equation has been found to yield a good representation of the volume changes along an isotherm for a number of polymers in the glassy state or in the melt. ${ }^{6,8,9}$ It is generally written as

$$
\begin{equation*}
v(p, T)=v(0, T)\{1-0.0894 \ln [1+p / B(T)]\} \tag{2}
\end{equation*}
$$

where $B(T)$ is the temperature-dependent Tait parameter, and it is determined from each data point along an isotherm, using the zero-pressure specific volume for that isotherm. A value of $B(T)$ independent of pressure indicates that the Tait equation is a good fit to the data. In the solid state of PMP, i.e., up to about $175^{\circ} \mathrm{C}$, where melting begins according to the DTA results, and in the melting range itself (175° to $235^{\circ} \mathrm{C}$), the Tait parameter is not a constant, but rather increases slowly with pressure (maximum change along an isotherm, about 5%). This observation has also been made on different polyethylenes, ${ }^{8}$ which are the only partially crystalline materials studied in terms of the Tait equation. For the melt ($T>253^{\circ} \mathrm{C}$), the Tait parameter is constant along an isotherm. $B(T)$ is usually found to be an exponentially decreasing function of temperature: ${ }^{8,9}$

$$
\begin{equation*}
B(T)=B_{1} \exp \left(-B_{2} T\right) \tag{3}
\end{equation*}
$$

In Figure 2, we give a plot of $\ln B$ versus T. Below $235^{\circ} \mathrm{C}$, we have plotted \ln \bar{B}, i.e., the natural logarithm of the average value of B along each isotherm. It can be seen that the average value of B follows an exponential temperature dependence up to 170° or $180^{\circ} \mathrm{C}$, indicating once again that melting starts about here. In the melting range itself, the average value of B drops more steeply until a very distinctive break occurs at $235^{\circ} \mathrm{C}$, the end of the melting range. Contrary to expectation, the temperature dependence is not exponential in the melt. A possible explanation for this might be the onset of thermal degradation at 270° or $280^{\circ} \mathrm{C}$. The following least-squares fits represent the data in Figure 2:
(a) Solid state $\left(30^{\circ}-175^{\circ} \mathrm{C}\right)$:

$$
\bar{B}(T)=2087 \exp \left(-4.533 \times 10^{-3} T\right)
$$

(b) Melting range $\left(175^{\circ}-235^{\circ}\right)$:

$$
\bar{B}(T)=1093+4.130 T-2.8447 \times 10^{-2} T^{2}
$$

(c) Melt $\left(235^{\circ}-320^{\circ} \mathrm{C}\right)$:

$$
B(T)=377+2.176 T-7.1834 \times 10^{-3} T^{2}
$$

where T is in ${ }^{\circ} \mathrm{C}, B$ and \bar{B} in $\mathrm{kg} / \mathrm{cm}^{2}$. These coefficients substituted into eq. (2), together with the coefficients of the fits for the zero-pressure specific volume given above, reproduce the data of Table I to better than $0.0015 \mathrm{~cm}^{3} / \mathrm{g}$ in the melt, to better than $0.003 \mathrm{~cm}^{3} / \mathrm{g}$ in the solid state and to better than $0.005 \mathrm{~cm}^{3} / \mathrm{g}$ in the melting range.

A comment might be added about the absolute value of $B(T)$ in the melt. The values drop from about $490-340 \mathrm{~kg} / \mathrm{cm}^{2}$ in the temperature range covered, which includes the melt-processing temperature range. These values are considerably lower than those of polystyrene ${ }^{6,9}$ or polyethylene ${ }^{8}$ in their respective processing ranges, which means that PMP melt, under typical processing conditions, is much more compressible than PS or PE melts. This follows immediately from the fact that the (isothermal) compressibility K may be expressed through the pressure independent Tait parameter B as follows:

$$
\begin{equation*}
K(p, T)=-\frac{1}{v}\left(\frac{\partial v}{\partial p}\right)_{T}=\frac{0.0894}{\{1-0.0894 \ln [1+p / B(T)]\} \cdot[p+B(T)]} \tag{4}
\end{equation*}
$$

In particular at $p=0$,

$$
\begin{equation*}
K(0, T)=\frac{0.0894}{B(T)} \tag{5}
\end{equation*}
$$

The author would like to thank Paul Schawalder for his competent assistance during the course of this work. The material used in this work was donated by Mitsui \& Co. Europe GmbH.

References

1. K. D. Pae and S. K. Bhateja, J. Macromol. Sci., C13, 1 (1975).
2. S. K. Bhateja and K. D. Pae, J. Macromol. Sci., C13, 77 (1975).
3. W. B. Parks and R. B. Richards, Trans. Faraday Soc., 45, 203 (1949).
4. K. H. Hellwege, W. Knappe, and P. Lehmann, Kolloid-Z., 183, 110 (1962).
5. P. Heydemann and H. D. Guicking, Kolloid-Z., 193, 16 (1964).
6. A. Quach and R. Simha, J. Appl. Phys., 42, 4592 (1971).
7. A. Quach, P. S. Wilson, and R. Simha, J. Macromol. Sci., B9, 533 (1974).
8. O. Olabisi and R. Simha, Macromolecules, 8, 206 (1975).
9. P. Zoller, P. Bolli, E. Hersche, and U. Foppa, Kunststoffe, 66, 363 (1976).
10. P. Zoller, P. Bolli, V. Pahud, and H. Ackermann, Rev. Sci. Instrum. 47, 948 (1976).
11. F. C. Frank, A. Keller, and A. O'Connor, Philos. Mag., 4, 200 (1959).
12. J. H. Griffith and B. G. Rảnby, J. Polym. Sci., 44, 369 (1960).
13. M. Litt, J. Polym. Sci., A1, 2219 (1963).
14. G. Natta, P. Pino, G. Mazzanti, P. Corradini, and U. Giannini, R. C. Accad. Lincei, 19, 397
(1955); G. Natta, P. Corradini, and I. W. Bassi, R. C. Acad. Lincei, 19, 405 (1955).
15. K. R. Dunham, J. Vandenberghe, J. W. H. Faber, and L. E. Contois, J. Polym. Sci., A1, 751 (1963).
16. F. P. Redding, J. Polym. Sci., 21, 547 (1956).

Received September 10, 1976

[^0]: * We use pressure in units of $\mathrm{kg} / \mathrm{cm}^{2}$ (kilograms-force per cm^{2}, abbreviated $\mathrm{kp} / \mathrm{cm}^{2}$ in the German literature). Other units may be obtained as follows: $1 \mathrm{~kg} / \mathrm{cm}^{2}=9.80665 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}=0.980665$ bar $=0.967841 \mathrm{~atm}=14.223 \mathrm{psi}$.

